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Abstract
We have reinvestigated a one-dimensional stochastic cellular automaton
introduced previously to study a kinetic critical phenomenon belonging to the
parity-conserving directed percolation universality class. It is found that this
model exhibits a second phase transition which is related to an ordering process
resulting in the extinction of domains of odd numbers of 1s or 0s.

PACS numbers: 05.65.+b, 05.10.Gg, 05.40.−a, 64.60.Cn, 64.60.Ht

Several years ago Grassberger et al [1] introduced two one-dimensional stochastic cellular
automata called models (A) and (B), which undergo the same kinetic phase transition when
varying the stochastic parameter P . This critical transition belongs to the parity-conserving
directed percolation universality class [2]. We have tried to study this critical behaviour by
fitting Padé approximants to the results obtained for a dynamical cluster method for different
cluster sizes. Our attempts failed in both cases although this method was very efficient for other
models [3,4]. When analysing the failure we observed a weak discrepancy in the deterministic
limit (P → 1) for both models. Henceforth we concentrate on model (B) exhibiting an
additional ordering process.

In the present one-dimensional stochastic cellular automaton [1] the state is described
by a set of variables si(t) = 0 or 1 (i ∈ Z) at a given discrete time t . In the subsequent
time steps the new state si(t + 1) is determined by the states si−1(t), si(t) and si+1(t). The
translation-invariant rules are characterized by the following transitions:

t : 111 110 101 100 011 010 001 000
t + 1: 0 s 1 1 s 0 1 0

where

s =
{

1 with probability P ,

0 with probability (1 − P).
(1)

Starting this system from a random initial configuration one can observe different pattern
evolutions depending on the value of P . For P = 0 the system tends toward a stationary
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Figure 1. Pattern evolution created from a random initial configuration (top row) for P = 1. Each
closed square represents the state 1. The motion of the centre of domains of odd length is indicated
by solid lines.

state where the ‘chessboard’ and ‘anti-chessboard’ phases are separated by standing kinks.
For small P -values the kinks walk randomly and two kinks annihilate each other if they meet.
Due to this annihilating random walk of kinks, the system tends toward an absorbing (ordered)
state without kinks if P < Pcr = 0.555(1). Above this threshold value (P > Pcr ) the kink
density remains finite in the stationary state because some particular random events produce
three kinks from one. The kink density characterized by the probability of finding (1, 1) pairs
in two neighbouring sites shows a power-law behaviour (i.e. p2(1, 1) � (P − Pcr)

β) in the
vicinity of Pcr if the system size goes to infinity. In this case the parity of the number of kinks
is conserved for both the annihilation and kink production. Unlike in the traditional branching
annihilating random walks, here the very likely mutual annihilation of the parent and one of its
offspring kinks does not leave an empty site behind; therefore the observed critical transition
differs from the robust directed percolation universality class [1, 2, 5].

The kink density increases with P until it reaches its maximum at P � 0.99[max
p2(1, 1) = 0.3814]. Surprisingly, after this maximum, p2(1, 1) shows an anomalous decrease
toward p2(1, 1) = 0.375 with a slope diverging when P → 1. Notice that the magnitude
of this decrease is less than 2% of the maximal value. Our analysis is focused on this weak
discrepancy.

For P = 1, the present cellular automaton is equal to the rule number 122 in the notation
of Wolfram [6]. In this limit case the chessboard structures are eliminated by the (1, 1) pairs
on their boundaries appearing sooner or later during the evolution as shown in figure 1. At
the same time this spatio-temporal pattern indicates a particular ordering process yielding the
extinction of domains with odd number of 1s (or 0s). Henceforth the centre of an odd-length
domain is considered as a particle whose density is characterized by ρ. Figure 1 illustrates two
such particles annihilating each other when they meet on the upper side of an empty triangle.

Finally all the particles die out and the stationary state can be built up from (1, 1) and (0, 0)
pairs. In this subset of phase space the dynamical rule becomes equivalent to the 6/16 rule, as
happens for some other cellular automata [4,7,8]. Straightforward analytical calculation yields
that the stationary state is equivalent to a random series of (1, 1) and (0, 0) pairs. Consequently,
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Figure 2. A log–log plot of c − 1/2 (open squares) and ρ, the density of domains with odd length
(diamonds), versus 1 − P . The slope of the theoretical prediction is plotted as a solid line.

the average densities of 1s and 0s are equal (p1(1) = p1(0) = 1/2), while p2(1, 1) = 3/8.
This uncorrelated distribution yields that the above-mentioned particles perform random walks
if their density is low.

In the vicinity of this deterministic limit, particle pairs are created with a probability 1−P .
Consequently, the present system can be considered as a set of annihilating particles walking
randomly with an external source creating particle pairs. Rácz [9] has recognized that this sys-
tem can be mapped to the one-dimensional Ising model for zero magnetic field. In the stationary
state the exact solution gives an average density of particles ρ � √

1 − P in the limit P → 0.
The consequences of the above prediction were checked by Monte Carlo simulations. The

simulations were performed on a lattice for different P -values and sizes (up to L = 2 × 106)
under periodic boundary conditions. During the simulations we monitored the number of 1s
and odd-length domains. After some suitable transient the stationary values were determined
by averaging over a sampling time that exceeded 5 × 105 Monte Carlo steps per site in the
vicinity of P = 1.

Figure 2 compares the Monte Carlo data with the above theoretical prediction for ρ.
The fitted slope (0.49(2)) agrees very well with the theoretical value (1/2). Furthermore, the
concentration of extra 1s (c − 1/2) is proportional to the density of odd-length domains.

It is also found that the variation of the probability of extra (1, 1) pairs (p2(1, 1) − 3/8)
exhibits similar P -dependence in this limit. This nonanalytical behaviour at P = 1 has caused
the failure of above-mentioned Padé approximation based on the series expansion with respect
to 1 − P .

Here it is worth mentioning that for the other model (A) introduced by Grassberger et al [1]
we have also observed some discrepancy in the limit P → 1. The detailed numerical analysis,
however, has confirmed that in this case the anomalous decrease of kink density becomes
linear if P → 1. We suspect that this behaviour is related to the appearance of those complex
configurations which are prohibited in the deterministic limit [10].

In summary, simple stochastic cellular automata can exhibit two different ordering
processes. In this case, difficulties can emerge in investigating the dominant one by
sophisticated techniques although the weaker process yields only a very small effect.
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[9] Rácz Z 1985 Phys. Rev. Lett. 55 1707

[10] Badii R and Politi A 1997 Phys. Rev. Lett. 78 444


